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Abstract

In this paper, both trigonometric and paratrigonometric Hermite interpolation for any number of
interpolation points with different multiplicities are constructed. The convergence of the Hermite
trigonometric interpolation operator for 2�-periodic function and the Hermite paratrigonometric in-
terpolation operator for 2�-antiperiodic function are given when the interpolated functions possess
certain analyticity.
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1. Introduction

A good few discussions for Hermite trigonometric interpolation problem have been
published. In[9], Salzer first discussed the Hermite trigonometric interpolation for non-
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equidistant interpolation points with uniform multiplicity by using flexibly the method of
Chebyshev systems, but he has not given any analysis for the remainder term. Kress[7]
established the Hermite trigonometric interpolation formula with equidistant interpolation
points and uniform multiplicity. He introduced some ideas and tools important to the most
succedent discussions on Hermite trigonometric interpolation and using them gave very
explicit representations for both the fundamental Hermite polynomials and the remainder
term. But we wonder that he avoided the singular integral of higher order in his process
yielding the integral representations for the remainder term. In[1], Delvos considered, re-
spectively, the�-periodic Hermite trigonometric interpolation and�-antiperiodic Hermite
trigonometric interpolation for any odd and any even number of interpolation points with
different multiplicities. His approach might be considered as an extension of the method
of Salzer and a generalization of Kress’s idea to non-equidistant interpolation points with
different multiplicities. He has also not given any analysis of the remainder term and those
trigonometric interpolation polynomials obtained are not ones of minimum degree in the
family of all trigonometric polynomials. In other words, they are the Hermite trigonometric
interpolation polynomials with the understanding under the scheme of the�-translation
nodes. In 1994, Dryanov[2] proved the existence and uniqueness of the Hermite trigono-
metric interpolation polynomial for general case, any number of interpolation points and
any multiplicities by the method based on Chebyshev systems. Using this method to get the
constructive fundamental Hermite trigonometric polynomials is very difficult. In 1997, Jin
[3] established constructively the fundamental Hermite polynomials for the general case.
He refered to[1,4] and[7] on Lagrange trigonometric interpolation. Until quite recently the
research on Hermite paratrigonometric interpolation problem has been completely ignored,
although it can yield excellent results for the quadrature formulas of singular integral with
the cosecant kernel, which will be given in a forthcoming paper. In addition, we point out
an interesting fact that Hermite trigonometric interpolation problem and paratrigonometric
interpolation problem are twins and their solutions are completely parallel. In the present
paper, we shall slightly modify the generating function used to Taylor trigonometric in-
terpolation in[1,7] due to Delvos and Kress. Then, the general Hermite paratrigonometric
interpolation and trigonometric interpolation are constructively given as well. If the inter-
polated function has certain analyticity, a clear integral representation for the remainder
term will also be obtained by the residue theorem of singular integrals of higher order due
to Jian-ke Lu[8].

2. Trigonometric and paratrigonometric polynomials

We useC2� to denote the family of all 2�-periodic continuous functions. LetHT
n denote

the class of all trigonometric polynomials of degree not greater thannand regardHT
n ={0}

if n<0. LetHT
n (�) denote the family of trigonometric polynomials of the form

an sin(nt + �)+ Tn−1(t), Tn−1∈HT
n−1, 0��<�, n > 1 (2.1)

and regardHT
n (�)={0} if n<0,HT

0 (0) = {0} andHT
0 (

�
2) = {all constants}. In (2.1)an

is called the coefficient of term of degreen. It is obvious that any trigonometric polynomial
of degreen (n�0) cannot belong to two different classesHT

n (�1) andH
T
n (�2) (�1 �=�2).
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If f is continuous andf (t + 2�) = −f (t) then we call it to be 2�-antiperiodic and write
it by f ∈ C2�. If

Tn+ 1
2
(t) =

n∑
j=0

[aj sin(j + 1
2)t + bj cos(j+ 1

2)t] with a2n + b2n �= 0, (2.2)

then we call it a paratrigonometric polynomial of degreen+ 1
2. LetH

T

n+ 1
2
denote the class

of all paratrigonometric polynomials of degree not greater thann+ 1
2. Obviously

HT

n+ 1
2

⊂ C2�, (2.3)

soT
n+1

2
is also called a trigonometric polynomial of degreen+ 1

2 in C2�. We again regard

HT

n+ 1
2
={0} if n<0. LetHT

n+ 1
2
(�) denote the family of all paratrigonometric polynomials

of the form

an sin[(n+ 1
2)t + �] + Tn− 1

2
(t), Tn− 1

2
∈HT

n− 1
2
, 0��<� (2.4)

and regardHT

n+ 1
2
(�)={0} if n<0. an is called the coefficient of the term of degreen + 1

2.

It is obvious that any paratrigonometric polynomial of degreen + 1
2 cannot belong to two

different classesHT

n+ 1
2
(�1) andHT

n+ 1
2
(�2) (�1 �=�2).

Lemma 2.1(Du Jinyuan and Liu Hua[6]).If F ∈ HT
1
2k
(�) is of degree12k (k�0), G ∈

HT
1
2 r
(�) is of degree12r (r�0), thenFG ∈ HT

1
2 (k+r)

([12� + � + �]�) is of degree12(k + r),

where[�]� denotes the number congruent to� (mod�) in [0,�).

Proof. It is enough to prove the case whenF(t) = sin(12kt + �) andG(t) = sin(12rt + �).
This follows from the relationF(t)G(t) = 1

2{cos[12(k − r)t + � − �] − sin[12(k + r)t +
1
2� + � + �]}. �

Corollary 2.1. sinm+1 1
2t cot

1
2t ∈ HT

1
2 (m+1)

([1
2(m+ 1)�

]
�

)
for m = 0, 1, . . . .

Lemma 2.2. If F ∈ HT
1
2k
(�) is of degree12k (k�0), thenF ′ ∈ HT

1
2k
([�

2 + �]�) and is of

degree12k.

Lemma 2.3. If F ∈ HT
1
2k

is of degree12 k (k�0), then it has at most k zero points on

[0, 2�).

Proof. SinceF 2 is a trigonometric polynomial ofk, so it has at most 2k zero points on
[0, 2�), thus,F has at mostk zero points on[0, 2�).
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Define the function

Km(t) = sinm+1 1
2tD

m cot 1
2 t (m = 1,2, . . .) with D := d

dt
, (2.5)

which is a minor modification of the generating function in[1,7]. It is clear that

K1(t) = −1
2 ∈ HT

0

(1
2�
)
, K2(t) = 1

2 cos 1
2t ∈ HT

1
2

(1
2�
)
. � (2.6)

In general, Kress has given the following results[7].

Lemma 2.4. Km ∈ HT
1
2 (m−1)

(1
2�
)
.

In fact,

Km+1(t) = sinm+2 1
2t D

m+1 cot 12t

= D
(
sinm+2 1

2tD
m cot 12t

)− (
D sinm+2 1

2t
)
Dm cot 12t

= sin 1
2tDKm(t)− m+1

2 cos12t Km(t),

using Lemmas 2.1 and 2.2, the present lemma is established by the inductive method.

Corollary 2.2. If p�m�1, thensinp+1 1
2tD

m cot 12t ∈ HT
1
2 (p−1)

([12(p+1−m)�]�
)
.

3. Trigonometric and paratrigonometric Hermite interpolation

Let t1 < t2 < · · · < tn bendistinct points in[0, 2�),�1, �2, . . . , �n benpositive integers,

{dj,�}n, �j−1
1, 0 = {dj,�, j = 1,2, . . . , n, � = 0, 1, . . . ,�j − 1} be a set of� =

n∑
j=1

�j given

numbers.

Problem THI. Find a trigonometric polynomialT of minimum degree which satisfies the
following interpolation conditions

D� T (tj ) = dj,�, j = 1,2, . . . , n, � = 0, 1, . . . ,�j − 1. (3.1)

Problem PTHI. Find a paratrigonometric polynomialT of minimum degree such that it
satisfies the interpolation conditions in (3.1).

The first problem is well known as the Hermite trigonometric interpolation problem, the
second problem is the Hermite paratrigonometric interpolation problem. Thereinafter we
shall see that their solutions are completely alternative and parallel. So, in either event we

clearly writeT by T

[
t1, t2, . . . , tn
�1, �2, . . . , �n

]
{dj,�}n, �j−1

1, 0 .
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The pointst1, t2, . . . , tn are called the nodes and�j is called the multiplicity of the node
tj .

Firstly, we do the simplest Taylor interpolation problem:n = 1, t1 = 0 and� = �1.
To do so, recall that the sinc function is defined by sincx = sinx/x which is an even
entire function satisfying sinc(0) = 1. Then the reciprocal function 1/sinc(x)is analytic in
|x| < � and possesses the Taylor series

x

sin x
=

+∞∑
j=0

a2j x
2j .

Now we have to consider the analytic function

(
x

2 sin x
2

)m+1

=
+∞∑
j=0

a2j (m)x
2j , |x| < 2�, (3.2)

wherem is non-negative integer.

Lemma 3.1. Let m and s be integers with0�s�m. Then

hs,m(t)= sinm+1 1
2t

(−1)m−s2m

s!

[
m−s
2

]∑
�=0

a2�(m)

(m−s−2�)!

×Dm−s−2� cot 1
2t ∈ HT

1
2 (m+1)

([12(m+1)�]�
)

(3.3)

and

D�hs,m(0) = ��,s , 0��, s�m, (3.4)

where[x] denotes the integer part of x,a2�(m) is the coefficient of the Taylor series(3.2),
��,s is Kronecker’s symbol.

Proof. It is easy to prove thaths,m ∈ HT
1
2 (m+1)

([12(m+1)�]�
)
by Corollaries 2.1 and 2.2.

Noting that, in some neighborhood ofz = 0,

Dq cot 1
2z = (−1)q

2q!
zq+1 +DqH(z), q = 0, 1, . . . , (3.5)
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where the functionH(z) is analytic, we obtain

hs,m(t)= sinm+1 1
2t

(−1)m−s2m

s!

[
m−s
2

]∑
�=0

a2�(m)

(m−s−2�)!
×
[
(−1)m−s 2(m− s − 2�)!

tm−s−2�+1 +Dm−s−2�H(t)

]

= sincm+1 1
2t

t s

s!

[
m−s
2

]∑
�=0

a2�(m)t
2�

+sinm+1 1
2t

(−1)m−s2m

s!

[
m−s
2

]∑
�=0

a2�(m)

(m−s−2�)! D
m−s−2�H(t)

= t s

s! − sinm+1 1
2t Hs,m(t),

where

Hs,m(t)=
(
2

t

)m+1
t s

s!
∞∑

�=[m−s
2

]+1
a2�(m)t

2�− (−1)m−s2m

s!

[
m−s
2

]∑
�=0

× a2�(m)

(m−s−2�)! D
m−s−2�H(t).

By 2� + s − m − 1�0 in the case��[m−s
2 ] + 1, the functionHs,m(t) is analytic. Then,

we get

D�hs,m(0) = ��,s , 0��, s�m. �

Remark 3.1. In fact,a0(m) = 1, so

hm−1,m(t) = − sinm+1 1
2t

2m

(m− 1)! a0(m)D cot 12t = 2m−1

(m− 1)! sin
m−1 1

2t.

By Lemma 2.1,hm−1,m ∈ HT
1
2 (m−1)

([12m�]�
)
is of degree12(m− 1).

Let

�s,�(t) =
{
hs,�−2(t)−D�−1hs,�−2(0)h�−1,�(t), s = 0, 1, . . . ,� − 2,

h�−1,�(t), s = � − 1.
(3.6)

By Lemma 3.1 and Remark 3.1, we get{
�s,� ∈ HT

1
2 (�−1)

, s = 0, 1, . . . ,� − 1,

D��s,�(0) = ��,s , � = 0, 1, . . . ,� − 1.
(3.7)

In other words, we have the following result.
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Lemma 3.2. When� is even,�s,� (s =0, 1, . . . ,�−1) are the fundamental paratrigono-
metric polynomials for Taylor paratrigonometric interpolation problem at the point0.When
� is odd,�s,� (s=0, 1, . . . ,�−1)are the fundamental trigonometric polynomials for Taylor
trigonometric interpolation problem at0.

Nextly, we are going to construct the fundamental functions for Problems THI and PTHI,
i.e., whiledr,k = 1 for certain(r, k) and the others vanish, we findTr,k such that

D� Tr,k(tj ) = �j,r��,k, j = 1,2, . . . , n, � = 0, 1, . . . ,�j − 1. (3.8)

To do this, let

�n(t) =
n∏

j=1

sin�j 1

2
(t − tj ), (3.9)

�n,r (t) =
n∏

j=1,j �=r

sin�j 1

2
(t − tj ). (3.10)

Noting that�n,r (tr ) �= 0, we introduce the following function:

	r,k(t) = (t − tr )
k

k!�n,r (t)
(3.11)

and write

	�
r,k = D�	r,k(tr ), � = 0, 1, . . . ,�r−1 (3.12)

In fact,

	�
r,k = 0 (� < k), 	k

r,k = 1

�n,r (tr )
. (3.13)

Obviously
s∑

�=k

C�
sD

s−��n,r (tr )	
�
r.k

=
s∑

�=0

C�
sD

s−��n,r (tr )	
�
r.k = �s,k, s = 0, 1, . . . ,�r−1. (3.14)

Introduce the function

�r,k(t) =
�r−1∑
s=k

	s
r,k�s,�r (t), (3.15)

where�s,�r ’s are given by (3.6) with� = �r .

Remark 3.2. By Remark 3.1 and (3.13), we know that�r,�r−1(t) = 2�r−1

(�r−1)!�n,r (tr )

sin�r−1 1
2t . In particular, if�r = 1 then�r,0(t) = 1

�n,r (tr )
.
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By (3.7), (3.15), Lemma 2.3 and (3.13), we may get


�r,k ∈ HT
1
2 (�r−1)

with order� 1
2k,

Ds�r,k(0) = 	s
r,k, s = 0, 1, . . . ,�r − 1.

(3.16)

Let

Tr,k(t) = �n,r (t)�r,k(t − tr ), (3.17)

then, by (3.10), (3.14) and (3.16), we easily see


Tr,k ∈ HT
1
2 (�−1)

, � =
n∑

j=1
�j ,

DsTr,k(tj ) = �j,r�s,k, j = 1,2, . . . , n, s = 0, 1, . . . ,�j − 1.

(3.18)

To sum up, we get

Tr,k(t)= 2�r−1�n(t)

sin 1
2(t−tr )


 1

(�r − 1)!


	�r−1

r,k −
�r−2∑
�=k

	�
r,kD

�r−1h�,�r−2(0)




+
�r−2∑
s=k

(−1)�r−s	s
r,k

2s!

[
1
2 (�r−s)

]
−1∑

�=0

× a2�(�r−2)

(�r−2−s−2�)!D
�r−2−s−2� cot 12(t−tr )


 ,

(3.19)

where

	s
r,k = Ds

[
(t − tr )

k

k!�n,r (t)

]
t=tr

(3.20)

and the above sum
�r−2∑
�=k

vanishes ifk = �r − 1.

Remark 3.3. As a special example, we point out


Tr,�r−1(t) = 2�r−1�n,r (t)

(�r−1)!�n,r (tr )
sin�r−1 1

2 (t − tr )

= �r�n(t)

2D�r�n(tr )
csc 1

2 (t − tr ),

Tr,0(t) = �n,r (t)

�n,r (tr )
= �n(t)

2�′
n(tr )

csc 1
2 (t − tr ) while �r = 1.

(3.21)
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Theorem 3.1. Let

T (t) = T

[
t1, t2, . . . , tn
�1, �2, . . . , �n

]
{dr,k}n, �j−1

1, 0 (t) =
n∑

r=1

�r−1∑
k=0

dr,kTr,k(t), (3.22)

whereTr,k is given by(3.19)with (3.20).Then,T ∈ HT
1
2 (�−1)

is the unique solution of

Problem PTHI when�=
n∑

j=1
�j is even,T ∈HT

1
2 (�−1)

is the unique solution of Problem THI

when�=
n∑

j=1
�j is odd.

Proof.By (3.18),T ∈ HT
1
2 (�−1)

. So, it is a paratrigonometric polynomial and trigonometric

polynomial, respectively, when� is even and odd. Obviously, the interpolation condition
(3.1) is satisfied forT. Now we prove that it has minimum degree. To do this, it is enough to

prove the uniqueness inHT
1
2 (�−1)

for T. In fact, ifG = G
[
t1, t2, . . . , tn�1, �2, . . . , �n

]
{dr,k}n, �j−1

1, 0 is

another one, thenD�T (tj ) − D�G(tj ) = 0 (j = 1,2, . . . , n, � = 0, 1, . . . ,�j − 1), Thus
T = G by Lemma 2.3. �

Example 3.1. If T ∈HT
1
2 (�−1)

with odd� andG(t)=T (2t), thenG∈HT
�−1 andG(� + t) =

G(t), in this caseG is said to be�-periodic[1]. In reverse, ifG ∈ HT
�−1 is�-periodic, thenwe

easily proveG(t)=
�∑

j=even
[aj sinj t+bj cosj t], so T ∈ HT

1
2 (�−1)

. Similarly,G ∈ HT
�−1 and

G(�+ t) = −G(t) (G is said to be�-antiperiodic[1]) is equivalent toT ∈HT
1
2 (�−1)

with even

�. Let xj = 1
2tj (j =1,2, . . . , n) andcj,k =2kdj,k (j =1,2, . . . , n, k = 0, 1, . . . ,�j − 1),

then, forj = 1,2, . . . , n, k = 0, 1, . . . ,�j − 1,

DkG(xj ) = cj,k ⇐⇒ DkT (tj ) = dj,k.

In this way, we may see that both the�-periodicG ∈ HT
�−1 satisfyingDkG(xj ) = cj,k

when� is odd and the�-antiperiodicG ∈ HT
�−1 satisfyingD

kG(xj ) = cj,k when� is even

areT

[
t1, t2, . . . , tn
�1, �2, . . . , �n

]
{dr,k}n, �j−11, 0 . Thus they uniquely exist, which is just the result in[1].

The remainder of Problems PTHI and THI is slightly complex. Firstly, if we find the
solution inHT

1
2�
, then both Problem PTHI with odd� and Problem THI with even� are not

properly posed. Since

�n ∈ HT
1
2�
(	) (3.23)
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where

	 =




[
−1

2

n∑
j=1

�j tj

]
�

if � is odd,

[
1
2 � − 1

2

n∑
j=1

�j tj

]
�

if � is even,

(3.24)

then,T ∈ HT
1
2�

is a solution, so doesT + �n. Secondly, if we find the solution inHT
1
2�−1

,

then both Problem PTHI with odd� and Problem THI with even� are pathological. In
fact, if T ∈ HT

1
2�−1

and satisfies the interpolation conditionsD�T (tj ) = ��,�n−1(j =
1,2, . . . , n, � = 0, 1, . . . ,�j − 1), thenT = 0 by Lemma 2.3, butD�n−1T (tn) = 1.
Of course, if we find the solutionT ∈ HT

1
2�
(	), then there exists constantC such that

T − C� ∈ HT
1
2�−1

, thus Problems PTHI and THI again become as finding the solution in

the spaceHT
1
2�−1

. In words, to find the solution inHT
1
2�
(�) (� �= 	) is appropriate.

Now, we come to construct the fundamental Hermite functionsTr,�r−1 (r = 1,2, . . . , n)
in HT

1
2�
(�) as follows:

Let

��
n,r (t) = �n,r (t) sin

�r−1 1

2
(t − tr ) sin

(
1

2
(t − tr )+ � − 	

)
(� �= 	). (3.25)

Then, by Lemma 2.1 and noting� �= 	, we get


��
n,r ∈ HT

1
2�
(�) with degree 1

2�,

D�r−1��
n,r (tr ) = 21−�r (�r − 1)!�n,r (tr ) sin(� − 	) �= 0.

(3.26)

Set up

Tr,�r−1(t)= ��
n,r (t)

D�r−1��
n,r (tr )

= �r�n(t) sin
(1
2(t − tr )+ � − 	

)
2D�r �n(tr ) sin(� − 	)

csc
1

2
(t − tr ), (3.27)

obviously


Tr,�r−1 ∈ HT
1
2�
(�)

with order 1
2�, r = 1,2, . . . , n,

D�Tr,�r−1(tj ) = �j,r��,�r−1, j = 1,2, . . . , n, � = 0, 1, . . . ,�j − 1.

(3.28)

Remark 3.4. Taking[� − 	]� = 1
2�, then

Tr,�r−1(t) = �r�n(t)

2D�r�n(tr )
cot

1

2
(t − tr ) (3.29)
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and

Tr,0(t) = �n(t)

2�′
n(tr )

cot
1

2
(t − tr ) (3.30)

while �r = 1.

Next, we construct the fundamental Hermite functionsTr,k (r = 1,2, . . . , n, k = 0,
1, . . . ,�r − 2) (�r �2) in HT

1
2�
(�) as follows:

By using Theorem 3.1, there existΥr,k such that{
Υ r,k ∈ HT

1
2�−1

, r = 1,2, . . . , n, k = 0, 1, . . . ,�r − 2,

D�Υr,k(tj ) = �j,r��,k, j = 1,2, . . . , n, � = 0, 1, . . . ,�j − 1− �j,r .
(3.31)

Let

Tr,k(t) = Υr,k(t)−D�r−1Υr,k(tr )Tr,�r−1(t), (3.32)

then, by (3.31) and (3.28), we get{
Tr,k ∈ HT

1
2�
(�), r = 1,2, . . . , n, k = 0, 1, . . . ,�r − 2,

D�Tr,k(tj ) = �j,r��,k, j = 1,2, . . . , n, � = 0, 1, . . . ,�r − 1.
(3.33)

To sum up the above results, we get

Tr,�r−1(t) = �r�n(t) sin

(
1
2 (t−tr )+�−	

)
2D�r�n(tr ) sin(�−	)

csc 1
2 (t − tr ),

Tr,k(t) = Υr,k(t)−D�r−1Υr,k(tr )Tr,�r−1(t), k = 0, 1, . . . ,�r − 2

(3.34)

where

Υ r,k(t)= 2�r−2�n(t)

sin2 1
2(t−tr )


 1

(�r − 2)!


	�r−2

r,k −
�r−3∑
�=k

	�
r,kD

�r−2h�,�r−3(0)




+
�r−3∑
s=k

(−1)�r−1−s	s
r,k

2s!

[
1
2 (�r−3−s)

]
∑
�=0

a2�(�r−3)

(�r−3−s−2�)!

×D�r−3−s−2� cot 12(t−tr )
}
.

(3.35)

Theorem 3.2. Let

T (t) = T

[
t1, t2, . . . , tn
�1, �2, . . . , �n

]
{dr,k}n, �j−1

1, 0 (t) =
n∑

r=1

�r−1∑
k=0

dr,kTr,k(t) (3.36)
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whereTr,k is given by(3.34) with (3.35).Then,T is the unique solution inHT
1
2�
(�) of

Problem PTHI when� =
n∑

j=1
�j is odd,T is the unique solutionHT

1
2�
(�) of Problem THI

when� =
n∑

j=1
�j is even. In concrete terms,if T is of degree less than12� then both Problems

PTHI and THI have only this solution,if T is of degree12� then they have a solution in each
classHT

1
2�
(�) (� �= 	), so infinite number of solutions.

Remark 3.5. Wepoint out the fact thatTgiven by (3.36) depends on the choice of�.While
we take� = [12� + 	]�, thenT is called of normal form.

Proof of Theorem 3.2.By (3.28) and (3.33), it is obvious thatT ∈ HT
1
2�
(�) and it satisfies

the interpolation condition (3.1). For fixed� �= 	, we prove the uniqueness ofT inHT
1
2�
(�).

In fact, ifG = G

[
t1, t2, . . . , tn
�1, �2, . . . , �n

]
{dr,k}n, �j−1

1, 0 is another one, then we immediately obtain

D�T (tj )−D�G(tj ) = 0 (j = 1,2, . . . , n, � = 0, 1, . . . ,�j −1), so T−G = C�n where
C is a constant, but� �= 	, thusC = 0. Moreover, ifT is of degree less than12�, thenT
is of normal form, so the problem discussed has only this solution. IfT is of degree12 �,
then for the problem discussed there is a solution in each classHT

1
2�
(�) (� �= 	), so they are

different to each other, i.e., the problem discussed has infinite number of solutions.�

Example 3.2. Takingtj = j
n
� and�j = p+1 (j = 0, 1, . . . ,2n−1), then� = 2n(p+1)

and�2n(t) = 1
2(p+1)(2n−1) sin

p+1 nt . Obviously, (3.24) becomes

	 =
{
0 if p is even,

1
2� if p is odd.

In any case we know that ProblemTHI has the solutionTof normal form, more precisely,
T ∈ HT

(p+1)n(
1
2�) if p is even andT ∈ HT

(p+1)n(0) if p is odd. This is just the results in[7].

Example 3.3. Let usgivea schemeof�-translationnodes.Taking0� t1 < t2 < · · · < tn <

�, tn+j = �+tj ,�n+j = �j ,dn+j,� = (−1)�−1dj,� (j = 1,2, . . . , n, � = 0, 1, . . . ,�j−1)

where� =
n∑

j=1
�j . The Hermite trigonometric interpolation polynomial of normal form is

denotedbyT (x) = T

[
t1, t2, . . . , t2n
�1, �2, . . . , �2n

]
{dr,k}2n, �j−1

1, 0 (x) ∈ HT
� (�), then(−1)�−1T (�+x)

is also one, thereforeT (x) = (−1)�−1T (� + x). This is to say thatT is �-periodic and
�-antiperiodic, respectively, when� is odd and even. Thus, the coefficient of term of degree
� vanishes. So,T ∈ HT

�−1 and is the unique solution of Problem THI under the scheme of
�-translation nodes. We get again the result in[1].
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4. Hermite interpolation of functions in C2� and C2�

Suppose that 2�-antiperiodic functionf has derivatives of order up to�r − 1 at the node
tr (r = 1,2, . . . , n). We introduce the Hermite paratrigonometric interpolation operator
(PTIO) of the form

T

[
t1, t2, . . . , tn
�1, �2, . . . , �n

]
f (t) =

n∑
r=1

�r−1∑
k=0

f (k)(tr )Tr,k(t), (4.1)

whereTr,k
,
s are given by (3.19) and (3.34) with (3.35), respectively, when� =

n∑
j=1

�j is

even and odd.
Obviously,

T

[
t1, t2, . . . , tn
�1, �2, . . . , �n

]
f ∈



HT

1
2 (�−1)

if � is even,

HT
1
2�
(�) if � is odd.

(4.2)

Let

�
[
t1, t2, . . . , tn
�1, �2, . . . , �n

]
= I − T

[
t1, t2, . . . , tn
�1, �2, . . . , �n

]
, (4.3)

whereI is the identity operator. Then�
[
t1, t2, . . . , tn
�1, �2, . . . , �n

]
is called the remainder of PTIO

(4.1). By Theorems 3.1 and 3.2 we have

Lemma 4.1.

ker

{
�
[
t1, t2, . . . , tn
�1, �2, . . . , �n

]}
=


HT

1
2 (�−1)

if � is even,

HT
1
2�
(�) if� is odd.

Whenf possesses certain analyticity, we may give the remainder�
[
t1, t2, . . . , tn
�1, �2, . . . , �n

]
f

a clear representation by using the same method of[5]. Assume thatf is 2�-antiperiodic
function analytic on the rectangular domainDr = {z, 0�Rez�2�, |Im z|�r} (r > 0)
with the boundary�Dr . We denotef ∈ AP(Dr). If f is 2�-periodic function analytic on
Dr , we writef ∈ AP(Dr).

Remark 4.1. In fact, if f ∈AP(Dr) (AP (Dr)), thenf is also analytic on the strip region
Sr = {z, |Im z| < r}. To emphasis on this fact we shall use sometimes the denotation
f ∈ AP(Sr)(AP (Sr)).

In [5], we have proved the following lemma.
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Lemma 4.2. For f ∈ HT
n (�) (n > 0), let

f ∗(
, t) =
{ [f (
)− f (t)] cot 12(
 − t) if 
 �= t,

2f ′(t) if 
 = t.
(4.4)

Sometimes we treat t as a parameter and writef ∗(
, t) as f ∗
t (
). Then f ∗

t ∈ HT
n([12� + �]�

)
, or more precisely,

f ∗(
, t)= an
[
cos(n
 + �)+ cos(nt+ �)

]
+

n−1∑
j=1

[
An−j (t) sin j
 + Bn−j (t) cosj


]
, (4.5)

whereAj , Bj ∈ HT
j andan is the coefficient of the term of degree n of f.

Similarly, we have also the following lemma.

Lemma 4.3. For f ∈ HT
n , let

f #
t (
) ≡ f #(
, t) =

{ [f (
)− f (t)] csc12(
 − t) if 
 �= t,

2f ′(t) if 
 = t.
(4.6)

Thenf #
t ∈ HT

n−1
2

. More precisely,

f #(
, t) =
n−1∑
j=0

[
A
j+1

2
(t) cos(n− j − 1

2)
 + B
j+1

2
(t) sin(n− j − 1

2)

]
. (4.7)

whereA
j+1

2
, B

j+1
2

∈ HT

j+1
2

.

Proof. It is sufficient to prove the casef (t) = sin(nt + �) (n = 1,2, . . .).

[sin(n
 + �)− sin(nt + �)] csc12(
 − t)

= ei�
[
ein
 − eint

] e
1
2 i(
+t)

ei
 − eit
+ e−i�

[
e−in
 − e−int

] e− 1
2 i(
+t)

e−i
 − e−it

= ei�
n−1∑
j=0

ei(j+
1
2 )t ei(n−j− 1

2 )
 + e−i�
n−1∑
j=0

e−i(j+ 1
2 )t e−i(n−j− 1

2 )


= 2
n−1∑
j=0

cos
(
(n− j − 1

2)
 + (j + 1
2)t + �

)
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= 2
n−1∑
j=0

[
cos((j+ 1

2)t + �) cos(n− j − 1
2)


− sin((j + 1
2)t + �) sin(n− j − 1

2)

]
. �

Introduce the following function:

�n(
, t) =




[
�n(
)− �n(t)

]
csc12(
 − t) if � is even,

[
�n(
)

sin( 12 (
−t)+�−	)
sin(�−	) − �n(t)

]
csc12(
 − t) if � is odd,

(4.8)

where� �= 	, � =
n∑

j=1
�j and	 is given by (3.24).

Lemma 4.4.

�n(
, t)=




1
2�−1∑
j=0

[
A
j+1

2
(t) cos(12�−j− 1

2)


+B
j+1

2
(t) sin(12�−j− 1

2)

]

if � is even,

B0 sin(12�
+�)+
1
2 (�−1)∑
j=1

[
Aj(t) cos(12�−j)


+Bj (t) sin(12�−j)

]

if � is odd,

(4.9)

whereA
j+1

2
, B

j+1
2

∈ HT

j+1
2

, Aj , Bj ∈ HT
j .

Proof. The first conclusion follows immediately from (4.7). When� = 1, (4.9) is clearly

true. For� = 2k + 1 (k > 0), letpk(
) = sin�1−1 1
2(
 − t1)

n∏
j=2

sin�j 1
2(
 − tj ). Then, by

Lemma 2.1,

pk(t)=B1
0 sin(kt + �)+ qk−1(t), B1

0 �= 0,

� =
[
1

2
(� + t1)+ 	

]
�
, qk−1 ∈ HT

k−1 (4.10)

and in concrete terms,

pk(t) = (−1)k

22k−1 sin(kt + 1
2(� + t1)+ 	)+ qk−1(t). (4.11)
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By using (4.5), we have

�n(
, t)

=
[
�n(
) cos

1

2
(
 − t)− �n(t)

]
csc

1

2
(
 − t)+ cot(� − 	)�n(
)

= sin
1

2
(
 − t1) [pk(
)− pk(t)] cot

1

2
(
 − t)+ cos

1

2
(
 − t1)pk(t)

+ cot(� − 	) sin
1

2
(
 − t1)

[
B1
0 sin(k
 + �)+ qk−1(
)

]

= B1
0

sin(� − 	)
sin 1

2(
−t1)
[
sin(� − 	) cos(k
+�)+ cos(�−	) sin 1

2(k
+�)
]

+ sin 1
2(
 − t1)

k−1∑
j=1

[
A1
j (t) sin(k−j)
+B1

j (t) cos(k−j)

]

+B1
0 sin

1

2
(
−t1) cos(kt+�)+ cos

1

2
(
 − t1)pk(t)

+ cot(� − 	) sin
1

2
(
 − t1)qk−1(
)

= B0 sin

(
1

2
�
 + �

)
+

1
2 (�−1)∑
j=1

[
Aj(t) cos

(
1

2
�−j

)

+Bj (t) sin

(
1

2
�−j

)


]
,

whereA1
j , B

1
j ∈ HT

j , Aj andBj are some linear associative forms ofA1
� andB

1
� (��j).

So, we knowAj , Bj ∈ HT
j . Thus, the second conclusion is proved.�

Lemma 4.5. If f ∈ AP(Dr) then

f (
) = 1

4�i

∫
�Dr

f (z) csc
1

2
(z − 
) dz, 
 ∈ Sr, (4.12)

where the above integral is understood as the Cauchy principle value integral if
 ≡ iy

(mod 2�) with real y(|y| < r).

Proof. Let us denote the interior ofDr by D0
r . By the residue theorem (4.12) is true for


 ∈ D0
r . If 
 = iy, by the extended residue theorem due to Jian-ke Lu[8, p. 75], we get
1

4�i

∫
�Dr

f (z)csc
1

2
(z−
) dz= 1

2
[sp(iy)res(iy)+sp(2�+iy)res(2�+iy)]

= 1

2
[f (iy)−f (2�+iy)]=f (iy),
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where sp(x)denotes the span atxwith respect to�Dr ( for example, sp(iy)= sp(2�+iy) =
1
2 for |y| < r) and res(x)is the residue of integrandf (z) csc12(z − 
) atx. Finally, noting
that both the function on the left-hand side and one on the right-hand side in (4.12) are
2�-antiperiodic, the proof is completed.�
Let

�n(
) = 1

4�i

∫
�Dr

f (z)
�n(
, z)
�n(z)

dz. (4.13)

In (4.13), if�n(0) = �n(2�) = 0, sayt1 = 0, then we understand it as the Cauchy principal
value integral when�1 = 1 and the singular integral of higher order when�1 > 1. Thus,
by (4.9) we get

�n ∈


HT

1
2 (�−1)

if � is even,

HT
1
2�
(�) if � is odd.

(4.14)

Now we prove the following approximation theorem.

Theorem 4.1. If f ∈ AP(Dr), then

T

[
t1, t2, . . . , tn
�1, �2, . . . , �n

]
f (
) = 1

4�i

∫
�Dr

f (z)
�n(
, z)
�n(z)

dz (4.15)

�
[
t1, t2, . . . ,tn
�1,�2,. . . ,�n

]
f (
)

=




�n(
)
4�i

∫
�Dr

f (z)
�n(z)

csc 1
2 (z−
) dz if � is even,

�n(
)
4�i

∫
�Dr

f (z)
�n(z)

[
cot 1

2 (z−
)−cot 1
2(�−	)

]
dz if � is odd,

(4.16)

or

�
[
t1, . . . ,tn
�1,. . . ,�n

]
f (
)

=




1
2�Re

{
i�n(
)

∫ 2�+ir
ir

f (z)
�n(z)

csc 1
2 (z−
) dz

}
if � is even,

1
2� Re

{
i�n(
)

∫ 2�+ir
ir

f (z)
�n(z)

[
cot 1

2 (z−
)−cot 1
2 (�−	)

]
dz
}

if � is odd

(4.17)

and ∥∥∥∥�
[
t1, t2, . . . , tn
�1, �2, . . . , �n

]
f

∥∥∥∥ �coth
( r
2

)
‖f ‖r ‖�n‖

∥∥∥(�n)
−1
∥∥∥
r
, (4.18)

where(4.16) is the singular integral of higher order if�n(0) = 0 or 
 = 0, ‖ · ‖ and
‖ · ‖r denotes the sup-norm of a function on[0, 2�] and on the line-segmentz = x + ir

(0�x�2�), respectively.
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Obviously, by (4.12) and (4.13), we have, for
 ∈ Sr ,

f (
)−�n(
)=




�n(
)
4�i

∫
�Dr

f (z)
�n(z)

csc 1
2 (z−
) dz if � is even,

�n(
)
4�i

∫
�Dr

f (z)
�n(z)

× [
cot 1

2 (z−
)−cot 1
2 (�−	)

]
dz if � is odd.

(4.19)

If we demonstrate the equalities

f �(tj ) = ��
n(tj ), j = 1,2, . . . , n, � = 0, 1, . . . ,�j − 1, (4.20)

then, by (4.14) and Lemma4.1, (4.15) and (4.16)would follow.Wemay get directlyf (tj ) =
�n(tj ) (j = 1,2, . . . , n) from (4.19), but to get whole (4.20) is not too easy. To do so, we
prove the following stronger result.

Lemma 4.6. For f ∈ AP(Sr), let

Fn(
) =




1
2�i

∫
�Dr

f (z)
�n(z)

csc 1
2 (z−
) dz if � is even,

1
2�i

∫
�Dr

f (z)
�n(z)

cot 1
2 (z − 
) dz if � is odd.

(4.21)

Then

Fn ∈
{
AP(Sr) if � is even,

AP (Sr) if � is odd.
(4.22)

Proof.Weprove this lemmaonly for the caseof even�, the caseof odd� is similar. Firstly,Fn
is obviously 2�-antiperiodic. Secondly, if
 ∈ Sr but 
 �≡ tj (mod 2�) (j = 1,2, . . . , tn),
thenFn is analytic at
 by (4.19). Thus, we only need to prove thatFn is analytic attj
(j = 1,2, . . . , tn). For simplicity, we write 0� t1 < t2 < · · · < tn < 2�.

CaseI: When�n(0) �= 0, so�n(z) �= 0 for z ∈ �Dr . Thus, the proof is very simple,
sinceFn is analytic inD0

r [10] andtj (j = 1,2, . . . , tn) is just inD0
r .

CaseII: When�n(0) = 0, sot1 = 0 ∈ �Dr . Thus, the proof is more complicated, since
Fn is a singular integral of higher order.
In this case, let

gn(z, 
) = f (z)

�n(z)
csc

1

2
(z − 
), res(g(·, 
), t) = res(
, t). (4.23)

For
 ∈ Sr , we partition the calculation ofFn(
) into four cases using the residue theorem
for singular integrals of higher order (see[8, p. 75]).

(1) When
 �= tj (j = 1,2, . . . , n) and is inD0
r , then

Fn(
) = 1

2
[res(
, 0)+ res(
, 2�)] +

n∑
j=2

res(
, tj )+ 2f (
)
�n(
)

. (4.24)
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We point out the important relation

res(
, 0) = res(
, 2�) for any
 ∈ Sr . (4.25)

In fact, if

gn(z, 
) =
+∞∑

j=−�j (
)

aj (
)zj , |z| < ,

where�j (
) = �j when
 �= tj and�j (
) = �j + 1 when
 = tj , then

gn(z, 
) = gn(z − 2�, 
) =
+∞∑

j=−�j (
)

aj (
)(z − 2�)j , |z − 2�| < .

So,

Fn(
) =
n∑

j=1

res(
, tj )+ 2f (
)
�n(
)

. (4.26)

(2) When
 = tj , similarly

Fn(tj ) =
n∑

�=1

res(tj , t�), j = 1,2, . . . , n. (4.27)

(3) When
 = iy (0< |y| < r), then

Fn(
) = 1

2
[res(iy,0)+ res(iy,2�)] +

n∑
j=2

res(iy, tj )

+1

2
[res(iy,
)+ res(iy,2� + 
)]

=
n∑

j=1

res(iy, tj )+ 2f (iy)

�n(iy)
.

(4.28)

(4) When
 ∈ Sr , there exists a point
0 with Re
0 ∈ [0, 2�) and an integerk such that

 = 2k� + 
0. Then

Fn(
) = (−1)kFn(
0). (4.29)
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In words, for any
 ∈ Sr we have

Fn(
)=




(−1)k
n∑

�=1
res(tj , t�) if 
 = 2k� + tj

(j = 1,2, . . . , n),

(−1)k
[

n∑
j=1

res(
0, tj )+ 2f (
0)
�n(
0)

]
if 
 = 2k� + 
0, 
0 �=tj

(j=1,2, . . . , n).

(4.30)

Next, we make a new integral forg(z, 
). LetGr denote the closed polygon bounded by
the polygonal line

[
2� − ir, 1

2(tn + 2�), 2� + ir, ir, 1
2(tn − 2�),−ir

]
. Set

Hn(
) =




1
2�i

∫
�Gr

f (z)
�n(z)

csc 1
2 (z−
) dz if � is even,

1
2�i

∫
�Gr

f (z)
�n(z)

cot 1
2 (z − 
) dz if � is odd,

(4.31)

Now we again consider four cases to calculateHn(
). Still assume that� is even.
(1) LetG0

r denote the interior ofGr . If 
0 ∈ G0
r , by the residue theorem we get

Hn(
0) =




n∑
�=1

res(tj , t�) if 
0 = tj (j = 1,2, . . . , n),

n∑
�=1

res(
0, tj )+ 2f (
0)
�n(
0)

if 
0 �= tj , 
0 ∈ G0
r .

(4.32)

(2) Let�denote the triangle boundedby thepolygonal line
[
2� − ir, 2� + ir, 1

2(tn + 2�)
]
.

If 
0 ∈ �0, by the residue theorem we get

Hn(
0) =
n∑

j=1

res(
0, tj )+ res(
0,−2� + 
0)

=
n∑

j=1

res(
0, tj )− 2f (−2� + 
0)
�n(−2� + 
0)

=
n∑

j=1

res(
0, tj )+ 2f (
0)
�n(
0)

.

(4.33)

In passing, here we have proved again that

res(
0,−2� + 
0) = res(
0, 
0) for any
0 �= tj (j = 1,2, . . . , n). (4.34)
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(3) If 
0 lies on the polygonal line
[
2� − ir, 2� + ir, 1

2(tn + 2�)
]
but
0 �= 2�−ir, 2�+ir,

then, by the extended residue theorem we get

Hn(
0)=
n∑

j=1

res(
0, tj )+ [
sp(−2� + 
0)res(
0,−2� + 
0)

+ sp(
0)res(
0, 
0)
]
, (4.35)

where sp(x)denotes the span atxwith respect to�Gr . Noting (4.34) and




sp(−2� + 
0) = sp(
0) = 1
2 if 
0 �= 1

2(tn + 2�),

sp
(1
2(2� + tn)

) = 1− 1
� arctan 2r

2�−tn
,

sp
(1
2(tn − 2�)

) = 1
� arctan 2r

2�−tn
,

(4.36)

we finally have

Hn(
0) =
n∑

j=1

res(
0, tj )+ 2f (
0)
�n(
0)

. (4.37)

(4) If 
 ∈ Sr then

Hn(
) = (−1)kHn(
0), 
 = 2k� + 
0. (4.38)

To sum up, we have

Hn(
)=




(−1)k
n∑

�=1
res(tj , t�) if 
 = 2k� + tj

(j = 1,2, . . . , n),

(−1)k
[

n∑
j=1

res(
0, tj )

+2f (
0)
�n(
0)

]
if 
 = 2k� + 
0, 
0 �= tj

(j=1,2, . . . , n).

(4.39)

By (4.30) and (4.39), we obtain

Fn(
) = Hn(
), 
 ∈ Sr . (4.40)

Remark 4.2. The proof for the case� being odd is similar.
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Noting thatHn is analytic onG0
r , in particular attj (j = 1,2, . . . , n), and hence so is

Fn. Hence we have pointed out above thatFn is analytic at
 �= tj , thereforeFn is analytic
onSr . Moreover,Hn is also analytic onSr . �

Proof of Theorem 4.1.By the analyticity ofFn (4.20) holds, consequently, both (4.15)
and (4.16) are true. Noting thatHn is only a Cauchy principle value integral, by the 2�-
periodicity of the expressionsf (z)�n(z)

csc 1
2 (z − 
) and f (z)

�n(z)
cot 1

2 (z − 
) with respect to
the variablez, we calculate that

Hn(
) =




1
2�i

{∫ 2�−ir
−ir

−∫ 2�+ir
ir

}
f (z)
�n(z)

csc 1
2 (z−
) dz if � is even,

1
2�i

{∫ 2�−ir
−ir

−∫ 2�+ir
ir

}
f (z)
�n(z)

cot 1
2 (z − 
) dz if � is odd.

(4.41)

By (4.40)

�
[
t1, . . . ,tn
�1,. . . ,�n

]
f (
)

=




�n(
)
4�i

{∫ 2�−ir
−ir

−∫ 2�+ir
ir

}
f (z)
�n(z)

csc 1
2 (z−
) dz

if � is even,

�n(
)
4�i

{∫ 2�−ir
−ir

−∫ 2�+ir
ir

}∫
�Dr

f (z)
�n(z)

[
cot 1

2 (z−
)−cot 1
2 (�−	)

]
dz

if � is odd,

(4.42)

which holds onSr . If 
 ∈ [0, 2�], then (4.17) holds. In fact, noting thatf possesses the
Schwarz symmetry (i.e.,f (z) = f (z)) by f (R ) ⊆ (R ) (R denotes the set of real
numbers) and the principle of the Schwarz symmetric extension, so do the integrands in
(4.42). Thus, (4.17) results from (4.42), (4.18) follows from (4.17).�

Remark 4.3. If we replace�Dr in the integrals (4.12) and (4.13) by�Gr , then (4.17) and
(4.18)might be obtained quickly . But we do not get (4.16), whichwill play a very important
role in the quadrature formulas of singular integral with the cosecant kernel.

Remark 4.4. By (4.41), we see



∫ ir

−ir
f (z)
�n(z)

csc 1
2 (z−
) dz = ∫ 2�+ir

2�−ir
f (z)
�n(z)

csc 1
2 (z−
) dz if � is even,

∫ ir
−ir

f (z)
�n(z)

cot 1
2 (z−
) dz = ∫ 2�+ir

2�−ir
f (z)
�n(z)

cot 1
2 (z−
) dz if � is odd.

(4.43)

This fact is very interesting, but not obvious since these integrals are singular integrals of
higher order whent1 = 0.
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Corollary 4.1. If f ∈ AP(Dr), then∥∥∥∥�
[
t1, . . . ,tn
�1,. . . ,�n

]
f

∥∥∥∥ � coth
r

2
‖f ‖r sinh−n r

2
, (4.44)

In particular, if r > 2arcsinh1= 2 ln(1+ √
2), then lim

�→∞

∥∥∥∥�
[
t1, . . . ,tn
�1,. . . ,�n

]
f

∥∥∥∥ = 0 where

� =
n∑

j=1
�j .

Suppose that 2�-periodic functionf has derivatives of order up to�r − 1 at the nodetr
(r = 1,2, . . . , n). We introduce the Hermite trigonometric interpolation operator (TIO) of
the form

T

[
t1, t2, . . . , tn
�1, �2, . . . , �n

]
f (t) =

n∑
r=1

�r−1∑
k=0

f (k)(tr )Tr,k(t), (4.45)

whereTr,k
,
s are given by (3.19) and (3.34) with (3.35), respectively, when� =

n∑
j=1

�j is

odd and even.
Obviously,

T

[
t1, t2, . . . , tn
�1, �2, . . . , �n

]
f ∈



HT

1
2 (�−1)

if � is odd,

HT
1
2�
(�) if � is even.

(4.46)

Denote the remainder as

�
[
t1, t2, . . . , tn
�1, �2, . . . , �n

]
= I − T

[
t1, t2, . . . , tn
�1, �2, . . . , �n

]
. (4.47)

By Theorems 3.1 and 3.2 we have also

Lemma 4.7.

ker

{
�
[
t1, t2, . . . , tn
�1, �2, . . . , �n

]}
=



HT

1
2 (�−1)

if � is odd,

HT
1
2�
(�) if � is even.

Now introduce the following function:

∧
n(
, t) =




[
�n(
)− �n(t) cos 1

2 (
 − t)
]
csc 1

2 (
 − t) if � is odd,

[
�n(
)

sin
(
1
2 (
−t)+�−	

)
sin(�−	) −�n(t) cos 1

2 (
−t)

]

× csc 1
2(
−t) if � is even,

(4.48)
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where� �= 	, � =
n∑

j=1
�j and	 is given by (3.24).

In exactly the same way, we have the following lemmas which are completely parallel to
Lemmas 4.4–4.6.

Lemma 4.8.

�n(
, t)=




1
2 (�−1)∑
j=0

[
A1

2�−j
(t) cosj
 + B1

2�−j
(t) sin j


]
if � is odd,

B0 sin(12�
+�)

+
1
2�−1∑
j=0

[
A1

2�−j
(t) cosj
+B1

2�−j
(t) sin j


]
if � is even,

(4.49)

whereA
j+1

2
, B

j+1
2

∈ HT

j+1
2

, Aj , Bj ∈ HT
j .

Lemma 4.9. If f ∈ AP(Dr) then

f (
) = 1

4�i

∫
�Dr

f (z) cot
1

2
(z − 
) dz, 
 ∈ Sr, (4.50)

where the above integral is understood as the Cauchy principle value integral if
 ≡
iy (mod 2�) with real y(|y| < r).

Lemma 4.10. If f ∈ AP(Sr), let

En(
) =




1
2�i

∫
�Dr

f (z)
�n(z)

csc 1
2 (z−
) dz if � is odd,

1
2�i

∫
�Dr

f (z)
�n(z)

cot 1
2 (z − 
) dz if � is even,

(4.51)

then

En ∈
{
AP(Sr) if � is odd,

AP (Sr) if � is even.
(4.52)

By these lemmas, we get the following result in an obvious manner similar to that used
before.

Theorem 4.2. If f ∈ AP(Dr), then

T

[
t1, t2, . . . , tn
�1, �2, . . . , �n

]
f (
) = 1

4�i

∫
�Dr

f (z)

∧
n(
, z)
�n(z)

dz, (4.53)
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�
[
t1, t2, . . . ,tn
�1,�2,. . . ,�n

]
f (
)=




�n(
)
4�i

∫
�Dr

f (z)
�n(z)

csc 1
2 (z−
) dz if � is odd,

�n(
)
4�i

∫
�Dr

f (z)
�n(z)

[
cot 1

2(z−
)

−cot 12(�−	)
]
dz if � is even,

(4.54)

or

�
[
t1, . . . ,tn
�1,. . . ,�n

]
f (
)=




1
2�Re

{
i�n(
)

∫ 2�+ir
ir

f (z)
�n(z)

csc 1
2 (z−
) dz

}
if � is odd,

1
2� Re

{
i�n(
)

∫ 2�+ir
ir

f (z)
�n(z)

[
cot 1

2 (z−
)

−cot 1
2 (�−	)

]
dz
}

if � is even,

(4.55)

and ∥∥∥∥�
[
t1, t2, . . . , tn
�1, �2, . . . , �n

]
f

∥∥∥∥ �coth
( r
2

)
‖f ‖r ‖�n‖

∥∥∥(�n)
−1
∥∥∥
r
. (4.56)

Example 4.1.As in Example 3.2 we take�2n(t) = 2−(p+1)(2n−1) sinp+1(nt + �) with an
arbitrary real number�. From (4.56) we get∥∥∥∥�

[
t1, . . . ,tn
�1,. . . ,�n

]
f

∥∥∥∥ = O
(
e− 1

2�r
)

as � → +∞, (4.57)

where� = 2n(p + 1).

For the more general case, we have the following.

Corollary 4.2. If f ∈ AP(Dr), then∥∥∥∥�
[
t1, . . . ,tn
�1,. . . ,�n

]
f

∥∥∥∥ � coth
r

2
‖f ‖r sinh−n r

2
. (4.58)

In particular, if r > 2arcsinh1= 2 ln(1+ √
2), then lim

�→∞

∥∥∥∥�
[
t1, . . . ,tn
�1,. . . ,�n

]
f

∥∥∥∥ = 0 where

� =
n∑

j=1
�j .
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