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Abstract

In this paper, both trigonometric and paratrigonometric Hermite interpolation for any number of
interpolation points with different multiplicities are constructed. The convergence of the Hermite
trigonometric interpolation operator forrzperiodic function and the Hermite paratrigonometric in-
terpolation operator for72-antiperiodic function are given when the interpolated functions possess
certain analyticity.
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1. Introduction

A good few discussions for Hermite trigonometric interpolation problem have been
published. In[9], Salzer first discussed the Hermite trigonometric interpolation for non-
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equidistant interpolation points with uniform multiplicity by using flexibly the method of
Chebyshev systems, but he has not given any analysis for the remainder term[7Kress
established the Hermite trigonometric interpolation formula with equidistant interpolation
points and uniform multiplicity. He introduced some ideas and tools important to the most
succedent discussions on Hermite trigonometric interpolation and using them gave very
explicit representations for both the fundamental Hermite polynomials and the remainder
term. But we wonder that he avoided the singular integral of higher order in his process
yielding the integral representations for the remainder terrfiL]lrDelvos considered, re-
spectively, thet-periodic Hermite trigonometric interpolation aneantiperiodic Hermite
trigonometric interpolation for any odd and any even number of interpolation points with
different multiplicities. His approach might be considered as an extension of the method
of Salzer and a generalization of Kress'’s idea to non-equidistant interpolation points with
different multiplicities. He has also not given any analysis of the remainder term and those
trigonometric interpolation polynomials obtained are not ones of minimum degree in the
family of all trigonometric polynomials. In other words, they are the Hermite trigonometric
interpolation polynomials with the understanding under the scheme of-tremslation
nodes. In 1994, Dryandi2] proved the existence and uniqueness of the Hermite trigono-
metric interpolation polynomial for general case, any number of interpolation points and
any multiplicities by the method based on Chebyshev systems. Using this method to get the
constructive fundamental Hermite trigonometric polynomials is very difficult. In 1997, Jin
[3] established constructively the fundamental Hermite polynomials for the general case.
He refered td1,4] and[7] on Lagrange trigonometric interpolation. Until quite recently the
research on Hermite paratrigonometric interpolation problem has been completely ignored,
although it can yield excellent results for the quadrature formulas of singular integral with
the cosecant kernel, which will be given in a forthcoming paper. In addition, we point out
an interesting fact that Hermite trigonometric interpolation problem and paratrigonometric
interpolation problem are twins and their solutions are completely parallel. In the present
paper, we shall slightly modify the generating function used to Taylor trigonometric in-
terpolation in[1,7] due to Delvos and Kress. Then, the general Hermite paratrigonometric
interpolation and trigonometric interpolation are constructively given as well. If the inter-
polated function has certain analyticity, a clear integral representation for the remainder
term will also be obtained by the residue theorem of singular integrals of higher order due
to Jian-ke LU8]J.

2. Trigonometric and paratrigonometric polynomials

We useC2, to denote the family of all 2-periodic continuous functions. Léi”T denote
the class of all trigonometric polynomials of degree not greatertreard regard?,” = {0}
if n<0. LetHT (o) denote the family of trigonometric polynomials of the form

a, sin(nt + o) + T,_1(1), T,,,leHnTA, Oa<m, n>1 (2.1)

and regardd,” (0) ={0} if n <0, HJ (0) = {0} andH{ (3) = {all constants}.In (2.1)ay,
is called the coefficient of term of degreelt is obvious that any trigopnometric polynomial
of degreen (n>0) cannot belong to two different cIassH{ (1) and HnT(ag) (o1 £ 2).
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If fis continuous andf ( + 2n) = — f(¢) then we call it to be 2-antiperiodic and write
ithy f € Cor. If
n
T, 1) = > “laj sin(j + 3)t + bj cos(j+ 3)t] with af + b2 # 0, (2.2)
j=0

then we call it a paratrigonometric polynomial of degnee % Let HnT+1 denote the class
2

of all paratrigonometric polynomials of degree not greater 'than%. Obviously

HT |
n+s

C 6271, (23)

o) Tn+ 1 is also called a trigonometric polynomial of degree % in C»,. We again regard
2
HnT+1 ={0}if n<O0. Let HnT+1 () denote the family of all paratrigonometric polynomials
2 2

of the form

n

an sin[(n + 3)t + o] + T,_1(), T, €eH' ,, O<u<m (2.4)
2

and regarcHT+1 (a) ={0} if n <0.q, is called the coefficient of the term of degree- %
nry

It is obvious that any paratrigonometric polynomial of degrege % cannot belong to two
different classe#f " | («1) andHT | (0p) (a1 # o).
n+3 n+35

Lemma 2.1(Du Jinyuan and Liu Hua[6)).If F € HlTk(oc) is of degree%k (k=0), G €
2
HT () is of degreelr (r>0),thenFG e HlT(k+ )([%n + o+ Bln) is of degrees (k +r),
20 2 (k+r
where[0], denotes the number congruentttémodr) in [0, 7).

Proof. It is enough to prove the case wheii) = sin(%kt +a)andG (1) = Sin(%rt + p).
This follows from the relation? (1)G (1) = 3{cosi(k — )t + o — B — sin[3(k + r)t +
in+o+pl). O

H 11 1 T 1 _
Corollary 2.1. sin"+1 3z cot 3¢ € H%(m+l) ([3em+ D] )form=0,1,....

Lemma 2.2. If F HlTk(OC) is of degreelk (k>0), thenF’ e HlTk([g + o], and is of
2 2

degreek.

Lemma2.3.If F € HlTk is of degree%k (k>0), then it has at most k zero points on
2
[0, 27).

Proof. Since F2 is a trigonometric polynomial ok, so it has at mosti2zero points on
[0, 2m), thus,F has at mosk zero points on0, 27).
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Define the function
. . d
Kn(t) =sin"t D" cot 3t m=1,2..) with D:= e (2.5)
which is a minor modification of the generating functior{17]. It is clear that

Ki(t) = -3 € H] (3n). Ka(t)=3 cosit e H%T (37). O (2.6)
In general, Kress has given the following resiitk
1
Lemma 2.4. K, € H%T(m,l) (57).

In fact,

Kni1(t) = sin"*2 3t D"+1cotds

D (sin"*2 3tD™ cot3t) — (D sin"+2 1) D™ cot 3t

Sin3tDK, (1) — "L cosdt K (1),

using Lemmas 2.1 and 2.2, the present lemma is established by the inductive method.

C o4l 1 1
Corollary 2.2. If p>m >1,thensin’™ 3t D™ cot3t € H%T(p_l) (I3(p+1—m)7lz).

3. Trigonometric and paratrigonometric Hermite interpolation

Letry < 2 < --- < 1, bendistinct pointsin0, 2n), A1, A2, ..., 4, benpositive integers,
L n
{dj,[}'i”)“’o Y—{dj,. j=1.2....n =01, ; —1}beasetof = '21 2; given
Jj=
numbers.

Problem THI. Find a trigonometric polynomidl of minimum degree which satisfies the
following interpolation conditions

D'T() =dje, j=1,2,...,n, £=0,1,...,2; -1 (3.1)

Problem PTHI. Find a paratrigonometric polynomial of minimum degree such that it
satisfies the interpolation conditions in (3.1).

The first problem is well known as the Hermite trigopnometric interpolation problem, the
second problem is the Hermite paratrigonometric interpolation problem. Thereinafter we
shall see that their solutions are completely alternative and parallel. So, in either event we

n, /lj*l

. 11, tz2, ..., Ity )
clearly writeT by T [/11’ o /1”} {djedy
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The pointsty, 1o, . . ., #, are called the nodes arig is called the multiplicity of the node
1.

Firstly, we do the simplest Taylor interpolation problem= 1,7 = 0 andi = /3.
To do so, recall that the sinc function is defined by sine sinx/x which is an even
entire function satisfying sinc{G= 1. Then the reciprocal function 1/sinc(is)analytic in
|x| < m and possesses the Taylor series

sinx Z azjx°

j=0

Now we have to consider the analytic function

X
23|n§

x m+1 00 )
( i ) =D azj(mix®, x| <2, (3.2)
j=0

wheremis non-negative integer.
Lemma 3.1. Let m and s be integers with<s <m. Then

771 —.

+11 ( 1)m s2m azg(m)
B, (1) = sin’™ ; n—s 2D

—s—20 1 T 1
xD" 32 cot 3t € H%(m+1) ([E(m—l—l)n]n) (3.3)
and
[hx,m (0) = 5£,s» 0, s<m, (34)

where[x] denotes the integer part of #, (m) is the coefficient of the Taylor seri€3.2),
0¢.s is Kroneckers symbol.

Proof. It is easy to prove thai; , € HT ([%(m+1)n]n) by Corollaries 2.1 and 2.2.

3 (m
Noting that, in some neighborhood @f: 0

DY cot 3z = (- 1920 | pip), ¢g=0,1,..., (3.5)

q+1
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where the functior (z) is analytic, we obtain

)m—s om [mT_S]

s!

age(m)
(m—s—20)!

. -1
hsm()= sin"™*1 3¢ (

]

(=0
~2(m —s — 20)! .
X |:(_1)m s W+ Dm=s ZZH(I)]

5 ("]
= sind"+13; 5 Z aze (m)t%
T (=0
_|_Sin’”+1 l‘t aze(m Dm—s—ZZH(t)
2 ! (m—s—20)!
: £=0 '
s . 1
= ; — sipntl 5t Hy (1),
where
2 m+1 s 00 (_1)m—52m [mgé]
H (1) = <_> o Z au(m)tzz_ !
t s! , S
=[5} e
« aze(m) Dm_S_ZZH(l‘).
(m—s—20)!

By 2¢ + s —m — 1>0 in the case > ["5*] + 1, the functionH; ,, (¢) is analytic. Then,
we get

D'hs m(0) = 8¢5, 0<l,s<m. O

Remark 3.1. In fact,ag(m) = 1, so

m—1

1
_ _epn+1 1, = 1, &« @ ayn-11
hin—1,m(t) = —sin"™= 5t Y ao(m) D cot5t = D) sin"™= 5t.
By Lemma 2.1/, 1. € H%T(m_l) (I3mnly) is of degree (m — 1).
Let
hy j—o(t) = D*hy 5 20,4 (1), s=0,1,...,A—2
CUS’;L(I) _ { $,A—2 5,A—2 -1, (36)
hj—1.,(0), s=1—1.
By Lemma 3.1 and Remark 3.1, we get
) T — 1
wMEH%().fl)’ s=01,...,4-1, 3.7)
Dews,i(o) = 5(5,5, ¢=0,1,... ,i — 1.

In other words, we have the following result.
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Lemma 3.2. When/ is evenw; ; (s =0,1, ..., 4—1) are the fundamental paratrigono-
metric polynomials for Taylor paratrigonometric interpolation problem at the p@id¢hen
Aisodd,w, ; (s=0, 1, ..., A-1) are the fundamental trigonometric polynomials for Taylor
trigonometric interpolation problem &b.

Nextly, we are going to construct the fundamental functions for Problems THI and PTHI,
i.e., whiled,; = 1 for certain(r, k) and the others vanish, we firfgl; such that

D'Tox(tj)) = 0,00k, Jj=21,2,....n, £=0,1,...,2; —1. (3.8)
To do this, let
An(t) = ]’[ sin’i }(t — 1)) (3.9)
, 2 "
j=1
n o 1
Ayy= [ sin S —1p). (3.10)
J=1.j#r
Noting that4,, ,(¢.) # 0, we introduce the following function:
(t —1)*
)= —— 3.11
d)r,k( ) k!An,r(l‘) ( )
and write
¢ty =D (1)), €=01,..., /-1 (3.12)
In fact,
Pla=0( <k Php=— (3.13)
n LT M) '
Obviously
N
> Dt A (1),
L=k
= > CID" Mt ey = sk s=0,1,... 7 —1. (3.14)
¢=0
Introduce the function
Jr—1
Ori(t) = Y @} poy, (0), (3.15)
s=k
wherew; ; ’s are given by (3.6) withl. = /,.
Remark 3.2. By Remark 3.1 and (3.13), we know théf, () = m

sin*>~1 3¢. In particular, ifZ, = 1 then0,o(1) = ﬁ.
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By (3.7), (3.15), Lemma 2.3 and (3.13), we may get

T
0rx € Hz() 1

D040 =y, s=01,.... % —1.

with order > 3k,

Let
Tr,k(t) = An,r(t)er,k([ - tr)»
then, by (3.10), (3.14) and (3.16), we easily see
n
TrkeHl(A 1y h= 2 A

DS Top(tj) = 0,650, j=12....n, s=01,...2;—1

To sum up, we get

2 A, (1) 1 bz
Trit)= D" ~Yhy; (0
# sin%(t—;,) (Jy — 1)! rk ;‘ﬁk 6,2,—2(0)
( l); _Yd) |:1(/lr_5)j|—1
r.k
+Z 3
=0
az(Ar—2) Jy—25-20 it 1
“Gh—2—s—201" cot3(t—1) ¢ .
where

Ky _ (t tr)k
k=D [k'An,rm} _

A2
and the above sun}_ vanishes ik = 4, — 1.
=k

Remark 3.3. As a special example, we point out

z)vy—lAnr _
Tr20) = G ST 30— 1)

oy An (1)

— L —
= 2D%r An(lr) Ccsc 2 (t tr)y

Ay (2 A, f
Tho(t) = A—((t)) = 2A,’1((2> csci (t—1,) while 4, = 1.

81

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)
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Theorem 3.1. Let

n A-—1
T(r) = T[gl’ ol } iy o 0 =3 Y des a0, (3.22)

1, “27"
r=1 k=0

where T, x is given by(3.19) with (3.20). Then,T € H{(/1 is the unique solution of
10—

1)

Problem PTHI wheri = Z ijisevenT e HT
j=1

1G-1) is the unique solution of Problem THI

when/= Z /j is odd.
j=1

Proof. By (3.18),T € HlT(; 1" So, itis a paratrigonometric polynomial and trigopnometric
1o-

polynomial, respectively, wheh is even and odd. Obviously, the interpolation condition

(3.1) is satisfied fol. Now we prove that it has minimum degree. To do this, itis enough to

prove the uniqueness |H2T( forT.Infact, ifG = G [/}1’ )22 ol ]{drk}i Aoi is

another one, the®*T () — D‘G(t]) =0(=12...,n¢=0,1,...,4; — 1), Thus

T =G bylLemma2.3. [

Example 3.1. If T eHl() Y with odd A andG (1) =T (2t), thenGeHﬁl andG(n+1t) =

G(1),inthis casé&is said to ber-periodic[1]. Inreverse, ilG € H{_l is t-periodic, then we

)
easily proveG ()= )  [ajsSinjt+bjcosjt],soT e Hl(ﬂ " . Similarly,G € H/{_land
j =even
G(n+1) = —G(r) (Gis said to ber-antiperiodid1]) is equivalent tal e HT Lo with even
2
A Letx,:ztj (j=1,2,...,n) andc];k=2 djk (j=1,2,....,n,k=0,1,..., «j —-1),

then,forj =1,2,...,n,k=0,1,...,4; — 1,
DFG(xj) = cjx < DT (t)) = dj 4.

In this way, we may see that both theperiodicG € H}_l satisfyingD"G(xj) =Cjk

when/ is odd and ther-antiperiodicG € H)T_l satisfyingD"G(xj) = cjr Whenilis even
areT [tl’ 222 oo dn } {d,, }"l)  Thus they uniquely exist, which is just the resulfih

The remainder of Problems PTHI and THI is slightly complex. Firstly, if we find the
solution mHlT , then both Problem PTHI with oddand Problem THI with even are not

properly posed Since

A, € H;TA((b) (3.23)
2
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where
[ 1 Z } if J.is odd,
¢ = B " (3.24)
|: -1 i } if /is even,
j=1 n

then,T € H |s a solution, so doeg + 4,,. Secondly, if we find the solution |HlT) iy

then both Problem PTHI with odd and Problem THI with everl are pathologlcal In
fact, if T < HTi , and satisfies the interpolation conditioB8 T (t;) = 6,5,-1(j =
Y

I\Jll—‘

1,2,...,n, £ = 0,1,...,2; — 1), thenT = 0 by Lemma 2.3, buD* 7 (z,) = 1.
Of course, if we find the solutio € HT (qb) then there exists consta@tsuch that

T—-CAe Hl;_ thus Problems PTHI and THI again become as finding the solution in

the spaceHT In words, to find the solution m{T (oc) (o # ¢) is appropriate.

Now, we come to construct the fundamental Hermlte functigns_1 (r =1,2,...,n)
in HT (@) as follows:

Let
Ay (1) = An r (1) sinr—1 % (t —t) sin (% t—1t)+o— q’)) (x # ¢). (3.25)

Then, by Lemma 2.1 and noting# ¢, we get

Ay, € Hi (@) with degree 37,
2

A A (3.26)
DAY (1) = 224 (2 — DAy (1) SiN(2 — ) # O.
Setup
A5 (1)
Tr _q(t) = ___mrr7
A1) =777 20
I An(t) sin(3( — 1) + o — 1
_ A )1 (3¢ _ r) ?) csc= (1 —ty), (3.27)
2D% A, (1) sin(o — ¢) 2
obviously
T, ;,-1€ H;TA(OC)
2
with order 3., r=1,2,...,n, (3.28)
DeTr,/l,.—l(tj) = 5]‘155,;*_1, j=12...,n,¢=01,... ,lj —1.
Remark 3.4. Taking[o — ¢1; = 3, then
A A (1) 1
T, 1(t) = ————cot - (t — ¢ 3.29
D) = S eot s = 1) (3.29)
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and
A, (1) 1
Tyo(t) = ——— cot - (t — ¢, 3.30
,0(1) 207 (1) 2( ) (3.30)
while 7, = 1.
Next we construct the fundamental Hermite functidhg (- = 1,2,...,n, k =0,
1,.. —-2) (A, >=2)in HT (o) as follows:

By using Theorem 3.1, there exist x such that

Tr,keHlTn X r=1,2,...,n, k=0,1,...,, — 2,
24 (3.31)
DlTr,k(l‘j) = 5./,,,543,](, j=12...,n, £=0,1,..., /1.,' —-1- 5./',,,.
Let
Tri(t) = Trp(t) — D710 4 (1) T, 5, 1 (1), (3.32)
then, by (3.31) and (3.28), we get
T,,keH{)(oc), r=212....n, k=0,1,..., —2,
2% (3.33)
DeTr’k(t]) = 5j,r55’k, ] = 1, 2, PR (N L= 0, 1, N ,)vr —1.
To sum up the above results, we get
A An () sin(%(z—t,)ﬂc—([)) 1
Tr,ﬂr—l(t) = 2D%r A, (1,) sin(e—) csc 2 (t — 1), (334)
Trx(t) = Tra(t) — D734 (1)T, 5, —1(0), k=0,1,..., % —2
where
2472/, (1) 1 )
Trr(t)= = D" ?h, ; _3(0)
ok Si? 3(t—t,) | (Ar — 2)! rk ;d} rk bA=3
s gy (3039 (3.35)
+Z (- 1) bk Z aze (4 —3) '
= (Jr—3—s—20)
x D* 32t cotd(r —t,)} )
Theorem 3.2. Let
T()=T [3113 ? o }{drk it =) Z dr Ty (1) (3.36)

r=1 k=0
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where T, is given by(3.34) with (3.35). Then, T is the unique solution ||H (rx) of

Problem PTHI whenl = Z Jj is odd, T is the unique solutloﬂH (oc) of Problem THI
j=1

n
whenZ = 3 4; is even. In concrete termi$T is of degree less thajii then both Problems
j=1
PTHI and THI have only this solutioif,T is of degre%i then they have a solution in each
cIassHT (o) (o0 # ), so infinite number of solutions.

Remark 3.5. We point out the fact that given by (3.36) depends on the choiceo#While
we taken = [%n + ¢]x, thenT is called of normal form.

Proof of Theorem 3.2.By (3.28) and (3.33), it is obvious tha@t e HT (@) and it satisfies
the interpolation condition (3.1). For fixed# ¢, we prove the umqueness'bfn HlT) (o).
i

M, 22y ooy An
D'T(tj))-D'G(tj))=0(j=1,2,...,n,£=0,1,...,4;—1),50 T— G = C4, where
Cis a constant, but # ¢, thusC = 0. Moreover, ifT is of degree less tha%M, thenT
is of normal form, so the problem discussed has only this solutionidfof degree—)
then for the problem discussed there is a solution in each H%s&) (o0 # ¢), so they are

different to each other, i.e., the problem discussed has |nf|n|te number of solutidns.

Infact,ifG = G [tl’ 2, oo ln ] {dr,k}'f M(fl is another one, then we immediately obtain

Example 3.2. Takingt; = %n andZ; = p+1(j=0,1,...,2n—1),theni = 2n(p+1)
and4y,(t) = m sin’*1 nt. Obviously, (3.24) becomes

0 if piseven,
b=y,
sn if pisodd.
Inany case we know that Problem THI has the soluli@finormal form, more precisely,

T e HT (2”) if pisevenand’ € H (0) if pis odd. This is just the results [i].

(p+1)n (p+1)n

Example 3.3. Letus give ascheme aftranslation nodes. Taking0r, <2 < --- <t <
Totnij =Tt dnsj = Ajydnije = (=11 (j=1,2,...,n, €=0,1,...,;—1)

n
where/ = )" 4;. The Hermite trigonometric interpolation polynomial of normal form is
j=1

e 2n,Li—1
denoted by’ (x) = T [;11 122 ;22"”} ()75 (0 € HY (@), then(—1)*~ 1T (n+x)

is also one, therefor®(x) = (—1)*"1T(x + x). This is to say thatf is n-periodic and
n-antiperiodic, respectively, whehis odd and even. Thus, the coefficient of term of degree
/ vanishes. Sal’ € H,1T_1 and is the unique solution of Problem THI under the scheme of
n-translation nodes. We get again the resultlin
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4. Hermite interpolation of functions in C», and Co,

Suppose that2antiperiodic functiorf has derivatives of order up #¢ — 1 at the node

t-(r = 1,2,...,n). We introduce the Hermite paratrigonometric interpolation operator
(PTIO) of the form
n =1
T[till’, 7 Zﬁﬁjmf(” => > P, (4.1)
r=1 k=0

whereT, ;" s are given by (3.19) and (3.34) with (3.35), respectively, when )~ /; is

j=1
even and odd.
Obviously,
HT if Zis even,
1, 12, ooosly 10-1
T\ ] I 4.2
|:A1, fa, 0, AJ fe HI (@) if Zis odd. (4.2)
i
Let
M, B2, costy |yl B2y ot
5[/’1’15 125 "'7;?}1} B I T[ily ;L‘Za "'7/"7}1}7 (4.3)
wherel is the identity operator. The&h[zll’ 122 i{l } is called the remainder of PTIO
‘1, PR )
(4.1). By Theorems 3.1 and 3.2 we have
Lemma 4.1.
HT . if /. is even,
ker 5 tlv {2» ey t,(l _ ?(/“71)
A5 72, vy An HT (x) ifZis odd.
12
Whenf possesses certain analyticity, we may give the remaid élg 322 e S" ] f

a clear representation by using the same methd&lofAssume thaf is 2r-antiperiodic
function analytic on the rectangular domdn = {z, 0<Rez<2x, |Imz|<r} (r > 0)
with the boundan®dD,. We denotef € AP(D,). If f is 2r-periodic function analytic on
D,,we write f € AP(D,).

Remark 4.1. In fact, if f € AP(D,) (AP(D,)), thenf is also analytic on the strip region
Sy = {z, lImz] < r}. To emphasis on this fact we shall use sometimes the denotation
f e AP(SH(AP(S)).

In [5], we have proved the following lemma.



Jinyuan Du et al. / Journal of Approximation Theory 131 (2004) 74—-99 87

Lemma 4.2. For f € HI (B) (n > 0), let

[f(1) — f(Olcot(x—1) if T#1,
[ = { _ (4.4)
2f'(t) if ©=rt.

Sometimes we treat t as a parameter and wifte(t, 1) as f*(r). Then f* € HT
([%n + ﬁ]n), or more precisely,

f*(t,t) =ay [cos(m + ) + cos(nt+ B)]
n—1

+ Z [An—;@)sin jt+ B,—j(t) cos jt], (4.5)
j=1

whereA;, B; € HJ.T anda, is the coefficient of the term of degree n of f.
Similarly, we have also the following lemma.

Lemma 4.3. For f € H!, let

[f () = fOlesez(r—n) if ©#1,
ffo=rfan = { _ (4.6)
21'(t) if t=1.
Thenf? € HT |.More precisely,
n-3
n—1
) = ]2:(:) |:Aj+%(t) cos(n—j — )t + Bj+%(t) sin(n — j — %)‘E:| . 4.7
T
WhereAH%, Bj+% € Hj+%

Proof. It is sufficient to prove the casg(r) = sin(nt + f) n = 1,2,...).

[sin(nt + B) — sin(nt + B)lcsci(c — 1)

1. 1.
. . . e?l(TH) . _: s efél(Tth)
— elﬁ |:ezn‘c _ emt:l : _te ip [6 int _ , tnt] . .
eiT — ot e—iT _ it
n—1 n—1
- giﬂzgi(/’+%)rei(n—j—%)r + e B Z o~ iU+ p=iln=j=3)
j=0 j=0

n—1
= ZZcos((n—j—%)r+(j+%)t+ﬁ)
j=0
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n—1

=2 Z [cos((j+ )t + B)cos(n— j — $)t
j=0

— sin((j + Hr+ Pysinm — j— D). O

Introduce the following function:

[4,(1) — 4,(1)] escd(x — 1) if 1 is even,
An (‘C, t) = L (48)
[An(r)%w — An(t):| csci(c—1) if Zis odd,
n
whereo # ¢, A= Y 4; and¢ is given by (3.24).
j=1
Lemma 4.4.
%fl [A (1) cosGi—j—73)
1) cosGA—j—3)T
j=0 L /*2 2 2
+B 1(0) sin(li—j—l)r} if /. is even,
Ap(z, 1) = j+3 2 2 (4.9)
30-1)
Bosin(3it+m+ Y [A; (1) cosGi—j)t
j=1
+B; (1) sin(34— j)t] if Zis odd,
T n. T
whereAH%, B./+% € H,-+%’ Aj.BjeH;.

Proof. The first conclusion follows immediately from (4.7). Whén= 1, (4.9) is clearly
true. Ford = 2k + 1 (k > 0), let px(v) = sif1™1 3(z —11) ] sin* 3(z — ;). Then, by

j=2
Lemma 2.1,

pi(t) = B sin(kr + B) + qx_1(1), B #0,

1
p=|5mrm+e] aaenl, (@.10)

T

and in concrete terms,

—1k
pr(1) = (22k——)1 sinkt + 3(m + 1) + §) + q—1(0). (4.11)
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By using (4.5), we have
Az, 0)

[An(r) cos%(r —1) — An(t)] csc%(r — 1) + cot(e — p)4,,(1)

1 1 1
sin 5 (t — 11) [pr () — pr(2)] cot > (t—1)+ cos (t — 1) pr (1)

1
+ cot(x — ) sin Sz — 1) [Bg sintkt + f) + qk,l(r)]

1
= _ B Sin%(‘c—tl) [sin(a — ¢) cos(kr+ )+ cose—¢) sin %(kr+,5)]

sin(a — ¢)
k—1

+sindc—my [A}(r) sin(k— j) 1+ B(1) cos(k—j)r]
j=1

L1 1
+ By sin é(‘r—tl) cos(kt+f5) + cos > (t — ) pi (1)

1
+ cot(o — ¢) sin 5(1 — 11)qk-1(7)

30-1)
= Bp sin }/lr—i—oc + Z A;i(t) cos }i— i | T+ B;(r) sin }i— i)t
0 2 j_l J 2 J J 2 J )
whereA}, B} € H], A; and B; are some linear associative forms4f and B} (¢< ).
So, we knowA ;, B; € HjT. Thus, the second conclusion is proved.]

Lemma 4.5. If f € AP(D,) then
1 1
f(o)= —/ f)ecsc-(z—1)dz, T€S, (4.12)
4mi oD, 2

where the above integral is understood as the Cauchy principle value integrakifiy
(mod 2r) with real y(|y| < r).

Proof. Let us denote the interior ab, by DP. By the residue theorem (4.12) is true for
T € Df.’. If T =iy, by the extended residue theorem due to Jian-kgBlp. 75], we get
1

1 1
— f)esc = (z—1) dz = =[sp(iy)res(iy}-sp(Zt+iy)res(Zt+iy)]
4ni J op, 2 2

1
= Slf ) = f@rtiy)]=fiy).
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where sp(xYenotes the spanatvith respect t@D, (for example, sp(iy}x= sp(2t+iy) =

% for |y| < r) and res(x)is the residue of integranf(z) csc%(z — 1) atx. Finally, noting

that both the function on the left-hand side and one on the right-hand side in (4.12) are
2n-antiperiodic, the proof is completed[]

Let

A0 (2)

In (4.13),if4,,(0) = 4,(2n) = 0, sayr; = 0, then we understand it as the Cauchy principal
value integral wheri; = 1 and the singular integral of higher order whian> 1. Thus,
by (4.9) we get

1 An (T,
0,(1) = 4—/ f@ (% 2) dz. (4.13)
L aDr

HT if 1is even,
A (4.14)
"7 HT (w) if 2is odd.
ilu
Now we prove the following approximation theorem.
Theorem 4.1.If f € AP(D,), then
1 A, (t, z)
11, t2, ..., I _
T|% 1 =— 4.15
o ro-0 [ NS vt (4.15)
11,12,...,l
0 [;vl,zz,. 3 A} f@
%f@p, i(fg) csci (z—1)dz if 1 is even,
= (4.16)
A;{g) faD, )[cot Lz—1)—cot 2(oc $)]dz if Ais odd,
or
5|:t1,.. t"}f(r)
id,(t )fZ’H”Af(é)) csc 3 (z—1) dz] if 1 is even,
- (4.17)
iAn(Of ;72 [cot § (z—1)—cot § (x—¢b)] dz} if /. is odd
and
r _
H [111; Z o 1} f” <coth(3) 171, 1441 | 4] (4.18)
where(4.16) is the singular integral of higher order iff,(0) = Oort = 0O, | - || and

Il - |l denotes the sup-norm of a function @) 2] and on the line-segmept= x + ir
(0< x <2n), respectively.
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Obviously, by (4.12) and (4.13), we have, foe S,,

ﬂ”—ﬁfal)r Z{;l(f;) csc 3 (z—1)dz if /is even,
f(T)_@H(T): A"(f)f F (@) (419)
4ni J OD, 4,(2)
x [cot 2 (z—1)—cot 3 (a—¢)]dz if Lis odd.
If we demonstrate the equalities
flep =05, j=1,2,....,n, £=0,1,...,2; —1, (4.20)

then, by (4.14) and Lemma 4.1, (4.15) and (4.16) would follow. We may get dirgat)y =
O,(t;) (j =1,2,...,n) from (4.19), but to get whole (4.20) is not too easy. To do so, we
prove the following stronger result.

Lemma 4.6. For f € AP(S,), let

2m faD j((zz)) CsC3 (Z 1)dz if Ais even,

Fa(m) = (4.21)
2 fop, 2 if Aisodd.

Then

AP(S,) if Xiseven,
F, € (4.22)
AP(S,) if Zisodd.

Proof. We prove this lemma only for the case of evigthe case of oddis similar. Firstly,F;,
is obviously Z-antiperiodic. Secondly, if € S, butt # ¢; (mod2r) (j = 1,2,...,1,),
then F, is analytic atr by (4.19). Thus, we only need to prove that is analytic atr;
(j=1,2,...,t,). For simplicity, we write <71 < t2 < --- < 1, < 2m.

Casel: When 4,,(0) # 0, so4,(z) # 0 forz € 0D,. Thus, the proof is very simple,
sinceF, is analytic inD? [10] andt; (j = 1,2, ..., 1,) is justin DO.

Casell: When 4,,(0) = 0, sor; = 0 € 0D,. Thus, the proof is more complicated, since
F, is a singular integral of higher order.

In this case, let

f(@
An(Z)

Fort € S,, we partition the calculation df;, (t) into four cases using the residue theorem
for singular integrals of higher order (sg& p. 75]).

gn(z,7) = csC = (z 1), res(g(-,1),t) =rese,1). (4.23)

(1) Whent #1¢; (j =1,2,...,n) and is inD?, then

2f(1)

F, - 0 2 )
(1) = [res(r ) + rese, 2n)] + Z rese, ;) + 10

j=2

(4.24)



92 Jinyuan Du et al. / Journal of Approximation Theory 131 (2004) 74-99

We point out the important relation

res@, 0) =res, 2n) foranyz € S,. (4.25)
In fact, if
+o0 )
gz = Y  aj@, [zl <n,
Jj==4;(®)

where/; (1) = 4; whent # t; andZ;(t) = 4; + 1 whent = ¢;, then

+00
gD =gG-2n0)= Y a@®c-2n/, |z—21 <n
Jj==4j(®
So,
Fo(t) = Z rest. 1) + Af @ (4.26)
a (1)
(2) Whent = ¢;, similarly
Fo(t)) =Y res(.t), j=12,....n. (4.27)
=1
(3) Whent =iy (0 < |y| < r), then
1 , _ - .
Fo(1) = 5 [res(iy.0) + res(iy.2m)] + ) res(iy. )
j=2
1 . .
+§ [res(iy,t) +res(iy,2m + 1)] (4.28)

2f(iy)
An(iy)’

= ZreS(zy, 0+

j=1

(4) Whent € S,, there exists a pointy with Retg € [0, 2r) and an integek such that
T = 2km + 10. Then

F (1) = (=1} F, (10). (4.29)
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In words, for anyr € S, we have

(=1 X" res@, 1) if ©=2kn+1;
=1
(=212...,n),
F,(1)= (4.30)
s 2fGo) |
(=1 El resto, 1;)+ 5oy | if ©=2kn+ 7o, 10 #1;
(j=1.2...,n).

Next, we make a new integral fgi(z, 7). Let G, denote the closed polygon bounded by
the polygonal lind2r — ir, 3(t, + 2n), 2r + ir, ir, 3(tx — 21), —ir]. Set

2m Jz6, Af ((Zz)) Csc3 (z 7)dz if Ais even,
(o) = (4.31)
if 2 is odd,

2ni f@Gr A, (

Now we again consider four cases to calculdtgr). Still assume that is even.
(1) LetGY denote the interior of,. If to € GO, by the residue theorem we get

n
> res(s, 1) if o=1t; (j=1,2,...,n),
(=1
Hy(o) =1 (4.32)
> reso, 1j) + E‘fgg; if 70 #¢;, 10€ G°.
=1

(2) Let<idenote the triangle bounded by the polygonal [@e — ir, 2r + ir, 3(t, + 2m)].
If 79 € <P, by the residue theorem we get

Hy(0) = ) _ resto, 1) + resto, —27 + o)

j=1
. 2f (-2
= Z res(o, ;) — % (4.33)
2f(r0)

= X;res(v:o, 1)+ - o)
J

In passing, here we have proved again that

resto, —2n + 10) = resto, o) foranytg #t¢; (j =1,2,...,n). (4.34)
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(3) If 7o lies onthe polygonal Iin§2n —ir,2n+ir, %(tn + 2n)] buttg # 2n—ir, 2n+ir,
then, by the extended residue theorem we get

H,(t0) =Y _ resfo. t;) + [SP(—2t + to)res(o. —2m + 7o)
j=1
+ sp(o)resto. 10)] . (4.35)

where sp(x)denotes the span atwith respect t@G, . Noting (4.34) and
SP(—2t + 10) = SP(o) = 5 if T0 # 3(tn + 27),

sp(3@2n+1,)) = 1- 1 arctan52— =, (4.36)

1 1 2
sp(5(ta — 2m)) = + arctan s

we finally have

- 2
H,(t0) = Z resto, t;) + f(TO). (4.37)
=1 An(TO)
(4) If T € S, then
H,(t) = (-1H,(10), 7= 2kn+ 10. (4.38)
To sum up, we have
n
=Dk Sres@, 1) if t=2kn+1;
=1
(j = 172""7’1)7
H,(1)= n 4.39
@ 1)"[2 resto, ;) (439
—l%] if T=2km+ 10, T0#1;
(j=1,2,...,n).
By (4.30) and (4.39), we obtain
F,(t) = H,(t), t€S,. (4.40)

Remark 4.2. The proof for the casg being odd is similar.
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Noting thatH,, is analytic onG?, in particular at; (j = 1,2,...,n), and hence so is
F,. Hence we have pointed out above tliatis analytic atr # ¢;, thereforeF;, is analytic
on S,. Moreover,H,, is also analytic or§,. [

Proof of Theorem 4.1.By the analyticity of F;, (4.20) holds, consequently, both (4.15)
and (4.16) are true. Noting tha&f, is onIy a Cauchy principle value integral, by the-2
periodicity of the expressiong@ csc 3 (z — 1) and /1Z- cot 3 (z — 1) with respect to
the variablez, we calculate that

L{ 2nir _ f271+”} f(2) csc i (Z 7)dz if Aiseven,

2ni |J —ir ir A,(2)
Hn(m) = (4.41)
AT S cotd —mde i Ais odd,
By (4.40)

5[111’,' S ] f (@

4, () 275—” ZTH'” f (@) 1
Eoat T & esch e

if 1is even,
_ (4.42)
R e, Alo0t § 0 —cot d - e

if 1is odd,

which holds onsS,. If T € [0, 2x], then (4.17) holds. In fact, noting thipossesses the
Schwarz symmetry (i.e.f(z) = f(z)) by f(R) € (R) (R denotes the set of real
numbers) and the principle of the Schwarz symmetric extension, so do the integrands in
(4.42). Thus, (4.17) results from (4.42), (4.18) follows from (4.17)]

Remark 4.3. If we replaced D, in the integrals (4.12) and (4.13) by, then (4.17) and
(4.18) might be obtained quickly . But we do not get (4.16), which will play a very important
role in the quadrature formulas of singular integral with the cosecant kernel.

Remark 4.4. By (4.41), we see

2n+i s
f_lrf((zz)) csci(z—1)dz = fzz_i.:ifé)) csci(z—1)dz if Ais even,

(4.43)

onti o
f”lrf((zz)) cot 3 (z—1)dz = fﬁf;:ﬂfz)) cot 3 (z—7)dz if Ais odd.

This fact is very interesting, but not obvious since these integrals are singular integrals of
higher order whem = 0.
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Corollary 4.1. If f € AP(D,), then

ey

o [fommtn] ] < comug, s 2, (4.44)

In particular, if > 2arcsinhl= 2In(1 + +/2), then lim H5 [311 e S"] fH = 0 where

A—00 IR

n
L= ij.
j=1

Suppose that2periodic functionf has derivatives of order up t — 1 at the node,
(r=21,2,...,n). We introduce the Hermite trigonometric interpolation operator (TIO) of
the form

n =1
[ i ]io =3 % Moo, s
r=1 k=0
whereT, ;" s are given by (3.19) and (3.34) with (3.35), respectively, when )~ /; is
j=1
odd and even.
Obviously,
H{ if 2 is odd,
T 1, 3, ..., Iy 2(2=1) ya
;Lla}vz,...,}bn fE ( )

HlT} () if Lis even.
1
Denote the remainder as
H, B, ooty |yt B2y ot
5[11, ‘2, A} = T[zl, /2. A} (4.47)
By Theorems 3.1 and 3.2 we have also

Lemma 4.7.

T o
H%(A—l) if Ais odd,

ker{&[tl’ 2, -5 lp “ =
ALy 42, ooy H{ (o) if 2iseven.
Y

Now introduce the following function:

[4,(1) — 44(t) cos} (x — )] cscd (x—1) if Ais odd,

A (T, 1) = |: sin(%(r—tH—a—¢) (4.48)
2 (T

) —si=gy— —An(t) cOS 3 (T—t)]

X CSC 3(T—1) if /is even,
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whereo # ¢, A = Z 4j andg¢ is given by (3.24).
j=1
In exactly the same way, we have the following lemmas which are completely parallel to
Lemmas 4.4-4.6.

Lemma 4.8.
30-1)
E:o |:A1 (t)COSJr+B% _(»)sin jr] if 1is odd,
Ay (T, )= B; sin(%/lr+oz) (4.49)
1
+]§0 Az, ,® cosjr+B%i_j(t)sin j‘c:| if /. is even,
WhereA

1.B 1eH! | AjBjeH].
t3 Ut 3 !

Lemma 4.9.If f € AP(D,) then
1 1
f(@= —/ f@cot=(z—1)dz, T€ES,, (4.50)
A7 oD, 2

where the above integral is understood as the Cauchy principle value integta=f
iy (mod 2r) with real y(|y| < r).

Lemma 4.10.If f € AP(S,), let

mh%u,fc)cai(z 7)dz if Ais odd,

En(®) = (4.51)
2ni faD 4 ((ZZ)) cot 3 (z—1)dz if Aiseven,

then

AP(S,) if Zisodd,
E, € (4.52)

AP(S,) if Ziseven.

By these lemmas, we get the following result in an obvious manner similar to that used
before.

Theorem 4.2.If f € AP(D,), then

l:lv t21 L ] t!l — i /\I’Z(T’ Z)
r [M, oo An:| @ =75 /GD, F@ =tk (4.53)



98 Jinyuan Du et al. / Journal of Approximation Theory 131 (2004) 74-99

4@ [ S escd (c-vde if Zis odd,

tl? t25 7 ] f(r)_ (4_54)
[“ 2 i Jap, 2,190 3G -0
—coti (oc $)) dz if /. is even,
or
LReli 4, (r)fzm” f(Z) cscl(z—1) dz} if 2 is odd,
Ao e ol L Re{zAn (_L_)f27t+er (fz))[cot ;-1
—cot 3 (a—¢)] dz} if 1is even,
r _
H [111’, 2o 1} fH <coth(Z) 171, 14,1 | 4072 - (4.56)

Example 4.1. As in Example 3.2 we takéy, (1) = 2~ ?+D@=D sinp+1;11 4 0) with an
arbitrary real numbefl. From (4.56) we get

_1
Hé [111 - ZSZJ f” =0 (e 2 ) as ) — +oo, (4.57)
whereld = 2n(p + 1).
For the more general case, we have the following.

Corollary 4.2. If f € AP(D,), then

1, ..., Z . *”z
‘5 [21,. N ;} f” < coth > I £l sinh 5 (4.58)
In particular, if » > 2arcsinhl= 2In(1 + +/2), then lim H5 [t}’ T ;”] fH = O where
A—00 Al oA
A= Z ;Lj
j=1
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